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Each rev1s1on of this book has embodied many changes that make the book better. 
However, the core of the subject of electromagnetics never changes. The fundamental 
objective of the book remains the same as in the first edition: to present electromagnetics 
concepts in a clearer and more interesting manner than other texts do. This objective is 
achieved in the following ways: 

I. In order to avoid complicating matters by covering electromagnetic and 
mathematical concepts simultaneously, vector analysis is covered at the beginning of the 
text and applied gradually. This approach avoids breaking in repeatedly with more 
background on vector analysis, thereby creating discontinuity in the flow of thought. It also 
separates mathematical theorems from physical concepts and makes it easier for the student 
to grasp the generality of those theorems. 

2. Each chapter opens either with a historical profile of some electromagnetic pioneers 
or a discussion of a modern topic related to the chapter. The chapter starts with a brief 
introduction that serves as a guide to the whole chapter and also links the chapter to the rest 
of the book. The introduction helps the students see the need for the chapter and how it 
relates to the previous chapter. Key points are emphasized to draw the readers' attention. 
A brief summary of the major concepts is discussed toward the end of the chapter. 

3. To ensure that students clearly understand the subject matter, key terms are defined and 
highlighted. Important formulas are boxed to help students identify essential formulas. 

4. Each chapter includes a reasonable number of solved examples. Because the exam­
ples are part of the text, they are clearly explained without asking the readers to fill in missing 
steps. In writing out the solution, we aim for clarity rather than efficiency. Thoroughly 
worked-out examples give students confidence to solve problems themselves and to learn to 
apply concepts, which is an integral part of engineering education. Each illustrative example 
is followed by a problem in the form of a Practice Exercise, with the answer provided. 

5. At the end of each chapter are 10 review questions in the form of multiple-choice 
objective items. It has been found that open-ended questions, although intended to be 
thought provoking, are ignored by most students. Objective review questions with answers 
immediately following them provide encouragement for students to do the problems and 
gain immediate feedback. A large number of problems are provided and are presented in the 
same order as the material in the main text. Problems of intermediate difficulty are identi­
fied by a single asterisk(*); the most difficult problems are marked with a double asterisk 
(**).Enough problems are provided to allow the instructor to choose some as examples and 
assign some as homework problems. Answers to odd-numbered problems are provided in 
Appendix E. 

6. Because most practical applications involve time-varying fields, six chapters are 
devoted to such fields. However, static fields are given proper emphasis because they 
are special cases of dynamic fields. Ignorance of electrostatics is no longer acceptable 

XIII 
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Electromagnetic theory is generally regarded by students as one of the most difficult 
courses in physics or the electrical engineering curriculum. But this misconception may 
be proved wrong if you take some precautions. From experience, the following ideas are 
provided to help you perform to the best of your ability with the aid of this textbook: 

I. Pay particular attention to Part 1 on vector analysis, the mathematical tool for this 
course. Without a clear understanding of this section, you may have problems with the rest 
of the book. 

2. Do not attempt to memorize too many formulas. Memorize only the basic ones, 
which are usually boxed, and try to derive others from these. Try to understand how formu­
las are related. Obviously, there is nothing like a general formula for solving all problems. 
Each formula has some limitations owing to the assumptions made in obtaining it. Be aware 
of those assumptions and use the formula accordingly. 

3. Try to identify the key words or terms in a given definition or law. Knowing the 
meaning of these key words is essential for proper application of the definition or law. 

4. Attempt to solve as many problems as you can. Practice is the best way to gain skill. 
The best way to understand the formulas and assimilate the material is by solving problems. 
It is recommended that you solve at least the problems in the Practice Exercise immediately 
following each illustrative example. Sketch a diagram illustrating the problem before 
attempting to solve it mathematically. Sketching the diagram not only makes the problem 
easier to solve, it also helps you understand the problem by simplifying and organizing your 
thinking process. Note that unless otherwise stated, all distances are in meters. For example 
(2, -1, 5) actually means (2 m, -1 m, 5 m). 

You may use MATLAB to do number crunching and plotting. A brief introduction to 
MATLAB is provided in Appendix C. 

A list of the powers of 10 and Greek letters conunonly used throughout this text is 
provided in the tables located on the inside cover. Important formulas in calculus, vectors, 
and complex analysis are provided in Appendix A. Answers to odd-numbered problems are 
in Appendix E . 



PART 1: VECTOR ANALYSIS 

2 5 4 

1.1 Find the value of the determinant V = 4 1 6 . 

3 0 1 

1.2 A 12 m ladder is made to lean on a wall making an angle of30° with the horizontal. 
Find the distance of its base from the wall and also the height at the point where it 
touches the wall. 

1.3 What is the distance R between the two points A(3, 5, 1) and B(S, 7, 2)? Also find 
1 

its reciprocal, - . 
R 

1.4 What is the distance vector R AB from A(3, 7, 1) to B(B, 19, 2) and a unit vector a AB 

in the direction of ~8? 

1.5 Given A = 2ax - 43.y + 3az and B = ax + 2ay + Sav find a unit vector ac that is 
perpendicular to both A and B. 

1.6 There are four charges in space at four points A, B, C, and D, each lm from every 
other. You are asked to make a selection of coordinates for these charges. How do 
you place them in space and select their coordinates? There is no unique way. 

1. 7 A man driving a car starts at point 0, drives in the following pattern 

15 km northeast to point A, 
20 km southwest to a point B, 
25 km north to C, 

I 0 km southeast to D, 

15 km west to E, and stops. 

How far is he from his starting point, and in what direction? 

1.8 A unit vector an makes angles a, {3, and y with the x-, y-, and z-axes, respectively. 
~ 

Express an in the rectangular coordinate system. Also express a nonunit vector OP 

of length f parallel to ~· 
~ 

1.9 A vector OP makes angles 75.5225° and 64.3411° with the x- and y-axes, respec-
~ 

tively. Another vector OQ makes 52.2388° with both x- and y-axes equally. Find 
~ ~ 

the angle between OP and OQ. 

1.10 An experiment revealed that the point Q(x', y', z') is 4 m from P(2, 1, 4) and that the 
~ 

vector QP makes 45.5225°, 59.4003°, and 60° with the x-, y-, and z-axes, respectively. 
Determine the location of Q. 

MA-1 



MA-2 MATH ASSESSMENT 

I. I 1 In a certain frame of reference with x-, y-, and z-axes, imagine the first octant to be 
a room with a door. Suppose that the height of the door is h and its width is p. 

The top-right corner P of the door when it is shut has the rectangular coordinates 
(p, 0, h). Now if the door is turned by angle <f>, so we can enter the room, what are 
the coordinates of P? What is the length of its diagonal r = OP in terms of p and z? 

----4 

Suppose the vector OP makes an angle(} with the z-axis; express p and h in terms 
of rand 0. 

1.I2 Consider an ellipse in the xy-plane described by the equation x2 
- xy + y2 = 7. 

Find a unit normal to the curve (i) at a general point P(x, y) and (ii) at (-1, 2) in 
particular. 

1.I3 What is the distance from origin to the plane 2x + 2y - z = 15? (Hint: The unit 

normal to any surface f(x, y, z) = c is given by a, = I~. The distance from origin 

to a given plane then is the dot product an· r, where r is a vector from the origin to 
any point on the plane; that is, it is a position vector of a point on the plane. 

1.I4 Givenf = x2y + 3z + 4, find (i) \If, (ii) \!2f, and (ii) a unit normal tof = 0 at (1, -2, 4). 

1.15 Given A= 2xy ax+ 3zy ay + Sz az and B = sinx ax+ 2y ay + Sy az, find (i) \!·A, 

(ii) \! X A, (iii) \! · \! X A, and (iv) \! · (A X B). 



PART 2: ELECTROSTATICS 

2.1 Define even and odd functions. Show that 

2 f flx)dx, 

0, 

IL pap - zaz 
2.2 Evaluate the integral - L(P2 + z2)312 dz. 

if f(x) 

if j{x) 

MATH ASSESSMENT MA-3 

is even 

is odd 

2.3 The cross section of a cylinder of radius 3 is shown in Figure MA-1. A straight 
charged wire MM' is found to pass through it at an angle (} with the diameter as 
shown. Find the length of the wire OF enclosed if 8 = 7T/6. 

y 

M' 

0 A 

M / x 

FIGURE MA-1 For Problem 2.3 

2.4 Show that the ordinary angle subtended by a closed curve lying in a plane at a 
point P is 27T radians if Pis enclosed by the curve and zero if not. 

2.5 Show that the solid angle subtended by a closed surface at a point P is 47T steradians 
if P is enclosed by the closed surface and zero if not. 

2.6 You are given a vector function A and a closed surface S. Determine the divergence 
of A and verify both sides of the divergence theorem on S. 

s: -2 < x < 3, 4 < y < 6, -3 < z < 4 

2.7 You are given a vector function A and a closed surface S. Determine the divergence 
of A and verify both sides of the divergence theorem on S. 

A = 3p sin <P ap + 6p2 a</J + Sz az 
7T 7T s : 3 < p < 5, - < <P < -, 2 < z < 5 
6 3 

2.8 You are given a vector function A and a closed surface S. Determine the divergence 
of A and verify both sides of the divergence theorem on S. 

7T 7T 7T 
A = 2r ar + Sr sin () cos </J a8 + 4 cos () a<P S : 3 < r < 5, - < () < - , 0 < </> < -

6 3 4 



MA-4 MATH ASSESSMENT 

2.9 A sphere of radius a centered at the origin has a total charge of 20 C uniformly 
distributed over its entire volume. If all the charge above the plane z = h is removed, 
how much charge is left in the sphere? Take a = 1 Om and h = 6m. 

2.10 Consider a vector given by A = (4xy + z)ax + 2x2ay + xaz. Find the line integral 

from A ( 3, 7, l) to B( 8, 9, 2) by (i) evaluating the line integral V,8 = - r E · dl along 
A 

the line joining A to Band (ii) evaluating { -r E · dl - I: E · dl - I: E · dl}, 

where the stopovers C and Dare C(8, 7, 1) and D(8, 9, 1). 

2.11 Given a vector A = 3ax - 2ay - 16az, find its components normal to the plane 
2x + 2 y - z + 8 = 0 and tangential to it. 

2.12 At the interface y = 0 a certain vector field is given by 

{
e- 2Ya + Sa 

A= x y 
e2Ya + 3a x y 

for y > 0 

for y < 0 

Taking the tangential and normal components, state which is continuous and which 
is not. 

2.13 You are given the plane S with a unit normal an and passing through M. Describe 
the method for finding the image P' of a point P in S for the particular case in 

3ax - 2ay + 6az 
which an = " / and S passes through M( 1, 0, 3 ). Find the coordinates 

v 32 + 22 + 62 

of the image of P(2, 1, 5) in S. 



MATH ASSESSMENT MA-5 

PART 3: MAG N ETOSTATICS 

3.1 A slant wire in the xy-plane joining the points 0(0, 0) and P(6, 8) carries a current 
of 5 A from 0 to Pas shown in Figure MA-2. Find the quantities cosa1 and cosa2 

and the distance MN. 

y 

M 
p (6,8) 

0 x 

FIGURE MA-2 A slant wire for Problem 3.1. 

3.2 You are given a vector function A and an open surface S bounded by C. Determine 
the curl of each vector function and verify both sides of Stokes's theorem on S and 
along C. 

A= 2xy~ + 3zyay + Szaz s: -2 < x < 3, 4 < y < 6, z = 4 

3.3 You are given a vector function A and an open surface S bounded by C. Determine 
the curl of each vector function and verify both sides of Stokes's theorem on S and 
along C. 

1T 1T 
A = 3p sin </> aP + 6p2 a</> + Sz az s: 3 < p < 5, - <A.< - , z < 7 . 6 l.f-' 3 

3.4 You are given a vector function A and an open surface S bounded by C. Determine 
the curl of each vector function and verify both sides of Stokes's theorem on S and 
along C. 

A = 2r2 ar + Sr sin () cos </> a0 + 4 cos 8 a</> 
1T 1T 1T 

S ·r= 5 -< (}< - Q<rl.< -. , - - , -'Y-
6 3 4 



MA-6 MATH ASSESSMENT 

PART 4: WAVES AND APPLICATIONS 

4.1 Show that V · V X A= 0. 

4.2 Show that V X Vl/f = 0. 

4.3 Show that V X V X A = VV · A - V2 A. 

4.4 Show that V · A X B = B · V X A - A · V X B. 

4.5 Use De Moivre 's theorem to prove that cos 3() = cos3 
() - 3 cos 8 sin28: 

4.6 Determine '\/j. 
4.7 Determine '\/j using the Euler formula. 

4.8 Find the phasors for the following field quantities: 

(a) Ex(z, t) = E0 cos (wt - {3z + ¢) (V Im) 

(b) Ey(z, t) = 100e- 3
z cos (wt - Sz + 7T/4) (Vim) 

(c) Hx(z, t) = H 0 cos (wt+ /3z) (Alm) 

(d) H/z, t) = 1207Te- sz cos (wt+ {3z + ¢ 1J (Alm) 

4.9 Find the instantaneous time domain sinusoidal functions corresponding to the 
following phasors: 

(a) Ex(z) = E
0
ej/3z (Vim) 

(b) Ey(z) = 100e- 3ze- jsz (Vim) 

(c) f5(z) = 5 + j4 (A) 

(d) Vs(z) = jlOeP13 (V) 

4.10 Write the phasor expression I for the following current using a cosine reference. 

(a) i(t) = I 0 cos (wt - 7T/6) 

(b) i ( t) = I 0 sin (wt + 7T I 3) 

4.11 Find the instantaneous V( t) for the following phasors using a cosine reference. 

(a) Vs= V0ef1Tf4 

(b) Vs = 12 - j5 (V) 

4.12 The unit normal to a plane is given by an. It also passes through a point S whose 
position vector is r 0 • Determine the equation of the plane. 

4.13 A voltage source V (t) = 100 cos (67Tl09t - 45°) (V) is connected to a series RLC 

circuit, as shown in Figure MA-3. Given R = 10 Mil, C = lOOpF, and L = 1 H, use 
phasor notation to find the following: 

(a) i(t) 

(b) Yc ( t), the voltage across the capacitor 

4.14 (i) Show that the locus of the points P(x, y) obeying the equation 

x2 + y2 + 2gx + 2fy + c = 0 

represents a circle. (ii) Express the coordinates of the center and the radius. Use the 
following equations of circles to find the centers and radii. 
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R jmL 

J, i(t) 
+ 

1 
Ve jmC 

FIGURE MA-3 A series RLC circuit for Problem 4.13. 

x2 + y2 + Bx - 4y + 11 = 0 

x2 + y2 
- 1 Ox + 6y + 9 = 0 

225x2 + 225/ + 90x - 300y + 28 = 0 

4.15 Recall the vector identity V X if! A = if! V X A + V l/J X A, where l/J is a scalar function 
e - jkr 

and A is a vector point function. Suppose A = Az~, where A z = -- and k is a con-
stant. Simplify V X A. r 

4.16 Show that the sum of the first N terms in a geometric series SN = 1 + x + x2 + · · · + 
1 - >!" 

J!V - 1 = and further assuming lxl < l, show that: 
1 - x 

1 
-- = 1 + x + x2 + x 3 + · · · 
1 - x 

1 
--=l-x+ x2 -x3 +-··· 
1 + x 

4.17 Show the following series expansion assuming lxl < 1: 

1 2 3 
--- = 1 + 2x + 3x + 4x + · · · 
( 1 - x) 2 

4.18 From the binomial expansion of (a + b t, build the Pascal triangle for 
n = 0, l , 2, · · · ' 5. 
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CODES OF ETHICS 

Engineering is a profession that makes significant contributions to the economic and social 
well-being of people all over the world. As members of this important profession, engineers are 

expected to exhibit the highest standards of honesty and integrity. Unfortunately, the engineering 
curriculum is so crowded that there is no room for a course on ethics in most schools. Although 
there are over 850 codes of ethics for different professions all over the world, the code of ethics 
of the Institute of Electrical and Electronics Engineers (IEEE) is presented here to give students a 
flavor of the importance of ethics in engineering professions. 

We, the members of the IEEE, in recognition of the importance of our technologies in affecting 

the quality of life throughout the world, and in accepting a personal obligation to our profession, 
its members and the communities we serve, do hereby commit ourselves to the highest ethical and 
professional conduct and agree: 

1. to accept responsibility in making engineering decisions consistent with the safety, health, 
and welfare of the public, and to disclose promptly factors that might endanger the public 
or the environment; 

2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to 
affected parties when they do exist; 

3. to be honest and realistic in stating claims or estimates based on available data; 
4. to reject bribery in all its forms; 

5. to improve the understanding of technology, its appropriate application, and potential 
consequences; 

6. to maintain and improve our technical competence and to undertake technological tasks 

for others only if qualified by training or experience, or after full disclosure of pertinent 
limitations; 

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct 
errors, and to credit properly the contributions of others; 

8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or 
national origin; 

9. to avoid injuring others, their property, reputation, or employment by false or malicious 
action; 

10. to assist colleagues and co-workers in their professional development and to support them 
in following this code of ethics. 

-Courtesy of IEEE 



CHAPTER 

VECTOR ALGEBRA 

One machine can do the work of fifty ordinary men. No machine can do the work of 

one extraordinary man. 
- ELBERT HUBBARD 

1.1 INTRODUCTION 

Electromagnetics (EM) may be regarded as the study of the interactions between electric 
charges at rest and in motion. It entails the analysis, synthesis, physical interpretation, and 
application of electric and magnetic fields. 

Electromagnetics (EM) is a branch of physics or electrical engineering in which 
electric and magnetic phenomena are studied. 

EM principles find applications in various allied disciplines such as microwaves, antennas, 
electric machines, satellite communications, bioelectromagnetics, plasmas, nuclear research, 
fiber optics, electromagnetic interference and compatibility, electromechanical energy conver­
sion, radar meteorology, and remote sensing.1

•
2 In physical medicine, for example, EM power, 

in the form either of shortwaves or microwaves, is used to heat deep tissues and to stimulate 
certain physiological responses in order to relieve certain pathological conditions. EM fields 
are used in induction heaters for melting, forging, annealing, surface hardening, and soldering 
operations. Dielectric heating equipment uses shortwaves to join or seal thin sheets of plastic 
materials. EM energy offers many new and exciting possibilities in agriculture. It is used, for 
example, to change vegetable taste by reducing acidity. 

EM devices include transformers, electric relays, radio/TV, telephones, electric motors, 
transmission lines, waveguides, antennas, optical fibers, radars, and lasers. The design of 
these devices requires thorough knowledge of the laws and principles of EM. 

1For numerous applications of electrostatics, see J.M. Crowley, Fundamentals of Applied Electrostatics. New 

York: John Wiley & Sons, 1986. 
2For other areas of applications of EM, see, for example, D. Teplitz, ed., Electromagnetism: Paths to Research. 

New York: Plenum Press, 1982. 

3 
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t1 .2 A PREVIEW OF THE 8001< 

The subject of electromagnetic phenomena in this book can be summarized in Maxwell's 
equations: 

V · D = Pv 

V·B=O 

aB 
\7 XE= --at 

oD 
VXH=J+ -at 

where \7 = the vector differential operator 
D = the electric flux density 
B = the magnetic flux density 
E = the electric field intensity 
H = the magnetic field intensity 
Pv = the volume charge density 
J = the current density 

( 1.1) 

(1.2) 

(1.3) 

(1.4) 

Maxwell based these equations on previously known results, both experimental and theore­
tical. A quick look at these equations shows that we shall be dealing with vector quantities. 
It is consequently logical that we spend some time in Part 1 examining the mathematical 
tools required for this course. The derivation of eqs. (1.1) to (1.4) for time-invariant condi­
tions and the physical significance of the quantities D, B, E, H, J, and Pv will be our aim in 
Parts 2 and 3. In Part 4, we shall reexamine the equations for time-varying situations and 
apply them in our study of practical EM devices. 

1.3 SCALARS AND VECTORS 

Vector analysis is a mathematical tool with which electromagnetic concepts are most con­
veniently expressed and best comprehended. We must learn its rules and techniques before 
we can confidently apply it. Since most students taking this course have little exposure to 
vector analysis, considerable attention is given to it in this and the next two chapters. 3 This 
chapter introduces the basic concepts of vector algebra in Cartesian coordinates only. The 
next chapter builds on this and extends to other coordinate systems. 

A quantity can be either a scalar or a vector. 

t Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is covered in one 

semester. 
3The reader who feels no need for review of vector algebra can skip to the next chapter. 



1.4 Unit Vector S 

A scalar is a quantity that has only magnitude. 

Quantities such as time, mass, distance, temperature, entropy, electric potential, and popu­
lation are scalars. 

A vector is a quantity that has both magnitude and direction. 

Vector quantities include velocity, force, displacement, and electric field intensity. Another 
class of physical quantities is called tensors, of which scalars and vectors are special cases. 
For most of the time, we shall be concerned with scalars and vectors.4 

To distinguish between a scalar and a vector it is customary to represent a vector by 
~ ~ 

a letter with an arrow on top of it, such as A and B , or by a letter in boldface type such as 
A and B. A scalar is represented simply by a letter-for example, A, B, U, and V. 

EM theory is essentially a study of some particular fields. 

A field is a function that specifies a particular quantity everywhere in a region. 

If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples 
of scalar fields are temperature distribution in a building, sound intensity in a theater, electric 
potential in a region, and refractive index of a stratified medium. The gravitational force on 
a body in space and the velocity of raindrops in the atmosphere are examples of vector fields. 

1.4 UNIT VECTOR 

A vector A has both magnitude and direction. The magnitude of A is a scalar written as 
A or IAI. A unit vector aA along A is defined as a vector whose magnitude is unity (i.e., 1) 
and its direction is along A, that is, 

(1.5) 

Note that laAI = 1. Thus we may write A as 

(1.6) 

which completely specifies A in terms of its magnitude A and its direction aA. 
A vector A in Cartesian (or rectangular) coordinates may be represented as 

or (1.7) 

4
For an elementary treatment of tensors, see, for example, A. I. Borisenko and I. E. Tarapor, Vector and Tensor 

Analysis with Applications. New York: Dover, 1979. 
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z z 

3z 

I 
ay 

.. y 

Ayay 

x x 

(a) (bl 

FIGURE 1.1 (a) Unit vectors ax, Cly, and an (b) components of A 
along an Cly, and az. 

y 

where Ax, A
1

, and Az are called the components of A in the x-, y-, and z-directions, respec­
tively; ax, a.y, and '1z are unit vectors in the x-, y-, and z-directions, respectively. For example, 
ax is a dimensionless vector of magnitude one in the direction of the increase of the x-axis. 
The unit vectors '1x, a1, and az are illustrated in Figure l.l(a), and the components of A along 
the coordinate axes are shown in Figure 1.1 (b). The magnitude of vector A is given by 

I A = y' A; + AJ + A~ I 
and the unit vector along A is given by 

Axax + Ayay + A zaz 
aA = 

VA2 + A2 + A2 
x y z 

1.5 VECTOR ADDITION AND SUBTRACTION 

Two vectors A and B can be added together to give another vector C; that is, 

C=A + B 

(1.8) 

(1.9) 

(1.10) 

The vector addition is carried out component by component. Thus, if A = (Ax, Ay, Az) 
and B = (Bx, B

1
, Bz). 

(1.11) 

Vector subtraction is similarly carried out as 

D =A - B =A + ( -B) 

= (Ax - BJax + (Ay - B1 )a1 + (Az - Bz)az 
(1.12) 
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B 

(a) (b) 

FIGURE 1.2 Vector addition C = A + B: (a) parallelogram rule, 
(b) head-to-tail rule . 

B FIGURE 1.3 Vector subtraction 
D = A - B: (a) parallelogram ru le, 
(b) head-to-tail rule. 

-B B 

(a) (b) 

Graphically, vector addition and subtraction are obtained by either the parallelogram rule 
or the head-to-tail rule as portrayed in Figures 1.2 and 1.3, respectively. 

The three basic laws of algebra obeyed by any given vectors A, B, and C, are summa­
rized as follows: 

Law 

Commutative 

Associative 

Distributive 

Addition 

A + B = B + A 
A + (B + C) = (A + B) + C 
k(A + B) = kA + kB 

Multiplication 

kA = Ak 

k( CA ) = (kf) A 

where k and .e are scalars. Multiplication of a vector with another vector will be discussed 
in Section 1.7. 

1.6 POSITION AND DISTANCE VECTORS 

A point Pin Cartesian coordinates may be represented by (x, y, z). 

The position vector rp (or radius vector) of point Pis defined as the directed dis­

tance from the origin 0 to P, that is, 

(1.13) 
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11 1

1 

EXAMPLE 1.1 

z 

x 

p 

0 

' ' ' 

FIGURE 1.4 Illustration of position vector 

rp = 3ax + 4ay = s~. 

FIGURE 1.5 Distance vector rPQ· 

The position vector of point Pis useful in defining its position in space. Point (3, 4, 5), for 
example, and its position vector 3ax + 4ay + Saz are shown in Figure 1.4. 

The distance vector is the displacement from one point to another. 

If two points P and Q are given by (xp, yp, Zp) and (x0, y0, z0), the distance vector (or 
separation vector) is the displacement from P to Q as shown in Figure 1.5; that is, 

rp0 = r0 - rp 

= (x0 - Xp)ax + (yQ - yp)ay + (z0 - Zp)az (1.14) 

The difference between a point P and a vector A should be noted. Though both P 
and A may be represented in the same manner as (x, y, z) and (Ax, Ay, Az), respectively, 
the point Pis not a vector; only its position vector rp is a vector. Vector A may depend on 
point P, however. For example, if A = 2xyax + Y3;i - xz2az and P is ( 2, - 1, 4), then A at 
P would be -4ax + a

1 
- 32az. A vector field is said to be constant or uniform if it does 

not depend on space variables x, y, and z. For example, vector B = 3ax - 2a
1 

+ lOaz is a 
uniform vector while vector A = 2xyax + y2ay - xz2az is not uniform because B is the 
same everywhere, whereas A varies from point to point. 

If A = lOax - 4a
1 

+ 6az and B = 2ax + ~'find (a) the component of A along a
1

, (b) the 
magnitude of 3A - B, (c) a unit vector along A + 2B. 




